Math

 

space-by-time

 

 

The first order space by time relation

 

The second order space by time relation

 

The third order space by time relation

The third order space-by-time relation

 

The fourth order space by time relation

 

 

 

space by time

space-by-time

y\ =\ \sin^2\left(2\cdot\pi\cdot x\right)

y\ =\ \frac{1}{2}-\frac{1}{2}\cos\left(4\cdot\pi\cdot x\right)

y\ =\ \frac{86}{1000}\ \cdot\frac{\left(1+r\right)^x-1}{r}

 

import sympy as sp

 

# Symbol for time

t = sp.symbols('t')

 

# R(t) and a(t) are functions of time

R = sp.Function('R')(t)

a = sp.Function('a')(t)

 

# Define x(t) and y(t)

x = R * sp.cos(a)

y = R * sp.sin(a)

 

# Compute 4th derivatives

x_4 = sp.diff(x, t, 4)

y_4 = sp.diff(y, t, 4)

 

# Magnitude squared of the 4th derivative vector

fourth_order_magnitude_squared = sp.simplify(x_4**2 + y_4**2)

 

# Pretty print the result

sp.pprint(fourth_order_magnitude_squared)

 

 

\[

(\dddot{X})^2 + (\dddot{Y})^2 =

\left( \dddot{R} - 6\dot{R} \dot{a}^2 - 12 \dot{R} a \ddot{a} - 3 R \dot{a}^2 \ddot{a} - 4 R \dot{a} \dddot{a} + R \dot{a}^4 \right)^2

+

\left( - R \dot{a} \ddot{a} - 4 \dot{R} \dot{a} a - 6 R \dot{a} \ddot{a} + 4 R \dot{a}^3 + 6 R \ddot{a}^2 \right)^2

\]

 

 

\[

\left( \ddddot{x} \right)^2 + \left( \ddddot{y} \right)^2 =

\left( \frac{d^4}{dt^4} \left[R \cos(a) \right] \right)^2 +

\left( \frac{d^4}{dt^4} \left[R \sin(a) \right] \right)^2

\]